New multiplication algorithms

David Harvey

University of New South Wales

ANTS XI, Gyeongju, Korea

(joint work with Joris van der Hoeven and Grégoire Lecerf)

Integer multiplication

Let I(n) = bit complexity of multiplying *n*-bit integers.

Classical multiplication: $I(n) = O(n^2)$. Schönhage–Strassen (1971): $I(n) = O(n \log n \log \log n)$. Fürer (2007): $I(n) = O(n \log n K^{\log^* n})$ for some unspecified K > 1.

Here log* is the iterated logarithm:

$$\log^*(e^{e^{e^{e^{e^e^e}}}})=7.$$

Integer multiplication

Our main results (see "Even faster integer multiplication" on arXiv):

• A new algorithm achieving

$$\mathsf{I}(n) = O(n \log n \, 8^{\log^* n}).$$

• If there are enough Mersenne primes, we can get

$$\mathsf{I}(n) = O(n \log n \, 4^{\log^* n}).$$

• Fürer's method can be optimised to achieve

$$\mathsf{I}(n) = O(n \log n \, 16^{\log^* n}),$$

but we don't know how to do better than 16.

Polynomial multiplication

We also give improved bounds for polynomial multiplication in $\mathbf{F}_{p}[X]$. In an algebraic model, we get

$$\mathsf{M}_{\mathbf{F}_p}(n) = O(n \log n \, 8^{\log^* n}).$$

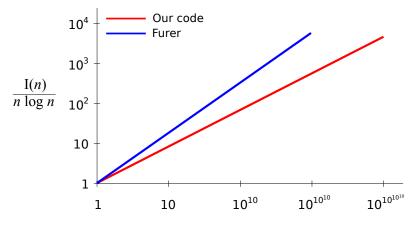
(See "Faster polynomial multiplication over finite fields" on arXiv.) No Fürer-type bounds were previously known for this problem. The best previous result was $O(n \log n \log \log n)$.

We implemented the new integer multiplication algorithm in C.

Assembly for critical inner loops.

Test system:

- Customised Linux cluster
 10^{10¹⁰¹⁰⁰⁰⁰⁰⁰⁰⁰⁰}
- $10^{10^{10}}$ compute nodes (16 cores, 2.6 GHz, 64 GB RAM)
- Two login nodes
- Modified IP stack, permits 10¹⁰¹⁰⁰⁰⁰⁰⁰⁰⁰⁰-digit IP addresses



п

