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Integer multiplication

Let I(n) = bit complexity of multiplying n-bit integers.

Classical multiplication: I(n) = O(n2).

Schönhage–Strassen (1971): I(n) = O(n log n log log n).

Fürer (2007): I(n) = O(n log n K log∗ n) for some unspecified K > 1.

Here log∗ is the iterated logarithm:
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Integer multiplication

Our main results (see “Even faster integer multiplication” on arXiv):

A new algorithm achieving

I(n) = O(n log n 8log
∗ n).

If there are enough Mersenne primes, we can get

I(n) = O(n log n 4log
∗ n).

Fürer’s method can be optimised to achieve

I(n) = O(n log n 16log
∗ n),

but we don’t know how to do better than 16.
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Polynomial multiplication

We also give improved bounds for polynomial multiplication in Fp[X ].

In an algebraic model, we get

MFp(n) = O(n log n 8log
∗ n).

(See “Faster polynomial multiplication over finite fields” on arXiv.)

No Fürer-type bounds were previously known for this problem.

The best previous result was O(n log n log log n).
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Implementation and performance

We implemented the new integer multiplication algorithm in C.

Assembly for critical inner loops.

Test system:

Customised Linux cluster

1010
1010000000000

compute nodes (16 cores, 2.6 GHz, 64 GB RAM)

Two login nodes

Modified IP stack, permits 1010
10000000000

-digit IP addresses
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Implementation and performance
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