Let *C* be the genus-2 curve over \mathbb{Q} defined by

$$y^{2} + (2x^{3} - 3x^{2} - 41x + 110)y = x^{3} - 51x^{2} + 425x + 179.$$

Let *D* be the divisor $(2, 17) + (4, 23) - \infty_1 - \infty_2$.

Let *C* be the genus-2 curve over \mathbb{Q} defined by

 $y^{2} + (2x^{3} - 3x^{2} - 41x + 110)y = x^{3} - 51x^{2} + 425x + 179.$

Let *D* be the divisor $(2, 17) + (4, 23) - \infty_1 - \infty_2$.

Record-breaking result:

The class of *D* in Jac *C* is a torsion point of order 70.

Idea:

Construct a curve whose Jacobian is (3,3)-isogenous to $E_1 \times E_2$, where

- E₁ has a torsion point of order 7, and
- E₂ has a torsion point of order 10.

Constructing curves (3, 3)-isogenous to $E_1 \times E_2$:

Formulas essentially due to Goursat (1885). More complicated formulas by Kuhn (1988) and Shaska (2004). Proof that Goursat's formulas have nice arithmetic properties: Bröker–H.–Lauter–Stevenhagen (2014).

Main requirement: Need $E_1[3] \cong E_2[3]$ as Galois modules.

Need E_1 , E_2 such that

- E₁ has a torsion point of order 7,
- E₂ has a torsion point of order 10, and

•
$$E_1[3] \cong E_2[3].$$

Searched Cremona tables, Stein–Watkins tables, parametrized families.

Found one example: $E_1 = 858k1$ and $E_2 = 66c2$.