Are there ∞ ly many polynomials $P : \mathbb{Z} \to \mathbb{Z}$ such that $|P(n)| \leq \text{Fib}_n$ for each $n \geq 0$?

ANTS-XI (GyeongJu, Korea), 10 August 2014

Vesselin Dimitrov, Noam D. Elkies*, and David Speyer

Let $A \subset \mathbf{Q}[X]$ be the ring

$$\left\{\sum_{i=0}^{d} a_i \binom{X}{i} : d < \infty, \ a_i \in \mathbf{Z}\right\}$$

of integer-valued polynomials.

Say that a function $f : \{0, 1, 2, ...\} \rightarrow \mathbb{R}$ "accommodates A" if \exists infinitely many $P \in A$ s.t. $|P(n)| \leq f(n)$ for each n = 0, 1, 2, ...

Example: 2^n accommodates A because each $\binom{X}{i}$ satisfies $0 \le \binom{n}{i} \le 2^n$ for all $n \ge 0$.

Question:

For which C > 1, r > 0 does $f(n) = rC^n$ accommodate A?

Question (repeat):

For which C > 1, r > 0 does $f(n) = rC^n$ accommodate A?

Nearly-complete answer: all r if $C > \varphi$, and none if $C < \varphi$, where $\phi = \text{Golden Ratio} (1 + \sqrt{5})/2 = 1.61803....$

Proof: See Mathoverflow question 139140. Hint: start with the generating function $\sum_{n=0}^{\infty} P(n)z^n \in (1-z)^{-1}\mathbb{Z}[(1-z)^{-1}].$

Question: what happens for $C = \varphi$ itself? In particular, does $f(n) = \operatorname{Fib}_n$ (Fibonacci) accommodate A?

Numerical evidence: for r = 1 the number of P's seems to blow up fast as $C \to \varphi$ from below: with $a_d > 0$, only three for $C = \sqrt{2}$ (namely 1, X - 1, and $\frac{X^2 - 5X + 2}{2} = {X \choose 2} - 2{X \choose 1} + {X \choose 0}$); ten for C = 3/2, with degree as large as 4 for ${X \choose 4} - 3{X \choose 3} + 3{X \choose 2} - {X \choose 1}$; and then (thanks to forqfvec) ...

					14/9 = 1.55555	25/16 = 1.5625
#	14	25	37	57	89	144

with degrees as high as 12, e.g. setting $a_0 = a_1 = a_2 = 0$ and

$$(a_3, a_4, a_5, \ldots, a_{12}) = (1, -8, 29, -63, 91, -91, 63, -29, 8, -1)$$

(coefficients of $(u-1)^7(u^2-u+1)$) yields $\sup_{n\geq 0} |P(n)|^{1/n} =$ 1.55549938... at n = 36. So at least the Lucas numbers should accommodate A?! \diamondsuit